Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology

Identifieur interne : 001394 ( Istex/Corpus ); précédent : 001393; suivant : 001395

Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology

Auteurs : Masao Nakatani

Source :

RBID : ISTEX:F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11

Abstract

We observed slow frictional slip occurring at a constant shear stress below the nominal friction level and compared it with the time‐dependent strengthening of the frictional interface, which was also tracked experimentally. It was found that slip velocity decreases as the interface strengthens due to aging, while it increases with the applied shear stress. These dependencies were both exponential and were of similar magnitudes, as implied by the framework law of rate‐ and state‐dependent friction. In the spirit of the adhesion theory of friction the dependence of slip velocity on interface strength is understood to be the result of the change of the shear stress acting on frictional junctions due to the change of junction population, though the observed dependence was somewhat stronger than a simple model based on this idea predicts. By correcting the observed slip velocity for the effect of the change of the interface strength, we could obtain a unique relationship between stress and slip velocity, which may be readily compared with a standard rheological formulation. Thus the obtained relationship between stress and slip velocity showed a reasonable agreement with the absolute rate theory over a temperature range of 25–800°C for the present experimental condition (fine albite powder, 20 MPa normal stress, no pore water).

Url:
DOI: 10.1029/2000JB900453

Links to Exploration step

ISTEX:F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology</title>
<author wicri:is="90%">
<name sortKey="Nakatani, Masao" sort="Nakatani, Masao" uniqKey="Nakatani M" first="Masao" last="Nakatani">Masao Nakatani</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1029/2000JB900453</idno>
<idno type="url">https://api.istex.fr/document/F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001394</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology</title>
<author wicri:is="90%">
<name sortKey="Nakatani, Masao" sort="Nakatani, Masao" uniqKey="Nakatani M" first="Masao" last="Nakatani">Masao Nakatani</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2001-07-10">2001-07-10</date>
<biblScope unit="volume">106</biblScope>
<biblScope unit="issue">B7</biblScope>
<biblScope unit="page" from="13347">13347</biblScope>
<biblScope unit="page" to="13380">13380</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11</idno>
<idno type="DOI">10.1029/2000JB900453</idno>
<idno type="ArticleID">2000JB900453</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We observed slow frictional slip occurring at a constant shear stress below the nominal friction level and compared it with the time‐dependent strengthening of the frictional interface, which was also tracked experimentally. It was found that slip velocity decreases as the interface strengthens due to aging, while it increases with the applied shear stress. These dependencies were both exponential and were of similar magnitudes, as implied by the framework law of rate‐ and state‐dependent friction. In the spirit of the adhesion theory of friction the dependence of slip velocity on interface strength is understood to be the result of the change of the shear stress acting on frictional junctions due to the change of junction population, though the observed dependence was somewhat stronger than a simple model based on this idea predicts. By correcting the observed slip velocity for the effect of the change of the interface strength, we could obtain a unique relationship between stress and slip velocity, which may be readily compared with a standard rheological formulation. Thus the obtained relationship between stress and slip velocity showed a reasonable agreement with the absolute rate theory over a temperature range of 25–800°C for the present experimental condition (fine albite powder, 20 MPa normal stress, no pore water).</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Masao Nakatani</name>
</json:item>
</author>
<articleId>
<json:string>2000JB900453</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>We observed slow frictional slip occurring at a constant shear stress below the nominal friction level and compared it with the time‐dependent strengthening of the frictional interface, which was also tracked experimentally. It was found that slip velocity decreases as the interface strengthens due to aging, while it increases with the applied shear stress. These dependencies were both exponential and were of similar magnitudes, as implied by the framework law of rate‐ and state‐dependent friction. In the spirit of the adhesion theory of friction the dependence of slip velocity on interface strength is understood to be the result of the change of the shear stress acting on frictional junctions due to the change of junction population, though the observed dependence was somewhat stronger than a simple model based on this idea predicts. By correcting the observed slip velocity for the effect of the change of the interface strength, we could obtain a unique relationship between stress and slip velocity, which may be readily compared with a standard rheological formulation. Thus the obtained relationship between stress and slip velocity showed a reasonable agreement with the absolute rate theory over a temperature range of 25–800°C for the present experimental condition (fine albite powder, 20 MPa normal stress, no pore water).</abstract>
<qualityIndicators>
<score>7.496</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>628 x 816 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1345</abstractCharCount>
<pdfWordCount>10748</pdfWordCount>
<pdfCharCount>101723</pdfCharCount>
<pdfPageCount>34</pdfPageCount>
<abstractWordCount>208</abstractWordCount>
</qualityIndicators>
<title>Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>106</volume>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<pages>
<total>34</total>
<last>13380</last>
<first>13347</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>B7</issue>
<subject>
<json:item>
<value>GEODESY AND GRAVITY</value>
</json:item>
<json:item>
<value>Seismic cycle related deformations</value>
</json:item>
<json:item>
<value>PHYSICAL PROPERTIES OF ROCKS</value>
</json:item>
<json:item>
<value>Physical Properties of Rocks</value>
</json:item>
<json:item>
<value>Fracture and flow</value>
</json:item>
<json:item>
<value>Plasticity, diffusion, and creep</value>
</json:item>
<json:item>
<value>SEISMOLOGY</value>
</json:item>
<json:item>
<value>Earthquake dynamics</value>
</json:item>
<json:item>
<value>Papers on Chemistry and Physics of Minerals and Rocks Volcanology</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Solid Earth</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
</host>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1029/2000JB900453</json:string>
</doi>
<id>F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2001</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology</title>
<author>
<persName>
<forename type="first">Masao</forename>
<surname>Nakatani</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202b</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2001-07-10"></date>
<biblScope unit="volume">106</biblScope>
<biblScope unit="issue">B7</biblScope>
<biblScope unit="page" from="13347">13347</biblScope>
<biblScope unit="page" to="13380">13380</biblScope>
</imprint>
</monogr>
<idno type="istex">F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11</idno>
<idno type="DOI">10.1029/2000JB900453</idno>
<idno type="ArticleID">2000JB900453</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>We observed slow frictional slip occurring at a constant shear stress below the nominal friction level and compared it with the time‐dependent strengthening of the frictional interface, which was also tracked experimentally. It was found that slip velocity decreases as the interface strengthens due to aging, while it increases with the applied shear stress. These dependencies were both exponential and were of similar magnitudes, as implied by the framework law of rate‐ and state‐dependent friction. In the spirit of the adhesion theory of friction the dependence of slip velocity on interface strength is understood to be the result of the change of the shear stress acting on frictional junctions due to the change of junction population, though the observed dependence was somewhat stronger than a simple model based on this idea predicts. By correcting the observed slip velocity for the effect of the change of the interface strength, we could obtain a unique relationship between stress and slip velocity, which may be readily compared with a standard rheological formulation. Thus the obtained relationship between stress and slip velocity showed a reasonable agreement with the absolute rate theory over a temperature range of 25–800°C for the present experimental condition (fine albite powder, 20 MPa normal stress, no pore water).</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>GEODESY AND GRAVITY</term>
</item>
<item>
<term>Seismic cycle related deformations</term>
</item>
<item>
<term>PHYSICAL PROPERTIES OF ROCKS</term>
</item>
<item>
<term>Physical Properties of Rocks</term>
</item>
<item>
<term>Fracture and flow</term>
</item>
<item>
<term>Plasticity, diffusion, and creep</term>
</item>
<item>
<term>SEISMOLOGY</term>
</item>
<item>
<term>Earthquake dynamics</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Papers on Chemistry and Physics of Minerals and Rocks Volcanology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000-03-09">Received</change>
<change when="2000-12-04">Registration</change>
<change when="2001-07-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb12684">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="70">
<doi>10.1002/jgrb.v106.B7</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="106">106</numbering>
<numbering type="journalIssue">B7</numbering>
</numberingGroup>
<coverDate startDate="2001-07-10">10 July 2001</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="90" status="forIssue">
<doi>10.1029/2000JB900453</doi>
<idGroup>
<id type="editorialOffice" value="2000JB900453"></id>
<id type="unit" value="JGRB12684"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="34"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Papers on Chemistry and Physics of Minerals and Rocks Volcanology</title>
<title type="tocHeading1">Papers on Chemistry and Physics of Minerals and Rocks Volcanology</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2001 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2000-03-09"></event>
<event type="manuscriptAccepted" date="2000-12-04"></event>
<event type="publishedPrint" date="2001-07-10"></event>
<event type="firstOnline" date="2012-09-20"></event>
<event type="publishedOnlineFinalForm" date="2012-09-20"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2012-12-07"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">13347</numbering>
<numbering type="pageLast">13380</numbering>
</numberingGroup>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1242">Seismic cycle related deformations</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/5100">PHYSICAL PROPERTIES OF ROCKS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/5100">Physical Properties of Rocks</subject>
<subject href="http://psi.agu.org/taxonomy5/5104">Fracture and flow</subject>
<subject href="http://psi.agu.org/taxonomy5/5120">Plasticity, diffusion, and creep</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/7209">Earthquake dynamics</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb12684-cit-0000" type="self">
<author>
<familyName>Nakatani</familyName>
,
<givenNames>M.</givenNames>
</author>
(
<pubYear year="2001">2001</pubYear>
),
<articleTitle>Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>106</vol>
(
<issue>B7</issue>
),
<pageFirst>13347</pageFirst>
<pageLast>13380</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/2000JB900453">10.1029/2000JB900453</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB12684.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology</title>
<title type="shortAuthors">Nakatani</title>
</titleGroup>
<creators>
<creator xml:id="jgrb12684-cr-0001">
<personName>
<givenNames>Masao</givenNames>
<familyName>Nakatani</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb12684-para-0001">We observed slow frictional slip occurring at a constant shear stress below the nominal friction level and compared it with the time‐dependent strengthening of the frictional interface, which was also tracked experimentally. It was found that slip velocity decreases as the interface strengthens due to aging, while it increases with the applied shear stress. These dependencies were both exponential and were of similar magnitudes, as implied by the framework law of rate‐ and state‐dependent friction. In the spirit of the adhesion theory of friction the dependence of slip velocity on interface strength is understood to be the result of the change of the shear stress acting on frictional junctions due to the change of junction population, though the observed dependence was somewhat stronger than a simple model based on this idea predicts. By correcting the observed slip velocity for the effect of the change of the interface strength, we could obtain a unique relationship between stress and slip velocity, which may be readily compared with a standard rheological formulation. Thus the obtained relationship between stress and slip velocity showed a reasonable agreement with the absolute rate theory over a temperature range of 25–800°C for the present experimental condition (fine albite powder, 20 MPa normal stress, no pore water).</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masao</namePart>
<namePart type="family">Nakatani</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2001-07-10</dateIssued>
<dateCaptured encoding="w3cdtf">2000-03-09</dateCaptured>
<dateValid encoding="w3cdtf">2000-12-04</dateValid>
<edition>Nakatani, M. (2001), Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology, J. Geophys. Res., 106(B7), 13347–13380, doi:10.1029/2000JB900453.</edition>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>We observed slow frictional slip occurring at a constant shear stress below the nominal friction level and compared it with the time‐dependent strengthening of the frictional interface, which was also tracked experimentally. It was found that slip velocity decreases as the interface strengthens due to aging, while it increases with the applied shear stress. These dependencies were both exponential and were of similar magnitudes, as implied by the framework law of rate‐ and state‐dependent friction. In the spirit of the adhesion theory of friction the dependence of slip velocity on interface strength is understood to be the result of the change of the shear stress acting on frictional junctions due to the change of junction population, though the observed dependence was somewhat stronger than a simple model based on this idea predicts. By correcting the observed slip velocity for the effect of the change of the interface strength, we could obtain a unique relationship between stress and slip velocity, which may be readily compared with a standard rheological formulation. Thus the obtained relationship between stress and slip velocity showed a reasonable agreement with the absolute rate theory over a temperature range of 25–800°C for the present experimental condition (fine albite powder, 20 MPa normal stress, no pore water).</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1242">Seismic cycle related deformations</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5100">PHYSICAL PROPERTIES OF ROCKS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5100">Physical Properties of Rocks</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5104">Fracture and flow</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5120">Plasticity, diffusion, and creep</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7209">Earthquake dynamics</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Papers on Chemistry and Physics of Minerals and Rocks Volcanology</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>106</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B7</number>
</detail>
<extent unit="pages">
<start>13347</start>
<end>13380</end>
<total>34</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11</identifier>
<identifier type="DOI">10.1029/2000JB900453</identifier>
<identifier type="ArticleID">2000JB900453</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2001 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001394 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001394 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:F72CAE98DCFDB5E30CBFA408B2BB08D0A4E13B11
   |texte=   Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024